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Mixing is investigated in three laminar radial flow cells (capillary gap cell (stationary discs), pump 
cell (one disc spinning) and the rotating electrolyser (co-rotating discs)) using numerical and semi- 
analytical methods for inert tracer transport. Results are compared to existing data. Mixing in the 
three cells is modelled using finite element techniques applied to convection-dominated inert tracer 
transport. For the capillary gap cell modes of  tracer tagging and detection are commented on with 
respect to which type provides the correct representation of the residence time distribution. The extent 
of cross-gap communication, from anode to cathode, is quantified and compared to that observed in 
the other radial cell designs. Two semi-analytical solutions (convection only, Taylor diffusion) are 
derived for inert tracer transport in this configuration and are compared to the detailed numerical 
results. Convection only is relevant for td/t c ratios of greater than 100 and the Taylor diffusion model 
applies for td/tc ratios of  about 0.10 and only beyond a critical radius defined herein. Pump cell (PC) 
mixing is modelled using finite element techniques for the tracer, the velocity field being provided by 
a semi-analytical solution. Mixing is quantified in this cell and cross-gap communication evaluated. 
The large axial velocities provide for significant cross-gap mixing. The rotating electrolyser is modelled 
and the efficiency of separation of  catholyte/anolyte streams is observed to be determined by Taylor 
number (Taylor number (c0 - ratio of half-gap width divided by theoretical boundary layer thick- 
ness). The superiority of separation in this cell is quantified by definition of the zeroth wall moment  
and comparison with the other two radial cells. For the example modelled, cross-gap communication 
was less than half that of  the other cells. 
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gap width (m) 
half interelectrode gap width (m) 
dimensionless concentration 
diffusion coefficient (m 2 s- 1 ) 
radial Taylor diffusion coefficient 
(Equation 39) 
normalized zeroth moment (Equation 6) 
Peclet number @ca/D) 
volumetric flow rate (m 3 s -l) 
dimensionless radius, dimensionless square 
radius in moving coordinates 
radius (m) 
Reynolds number @ca/V) 
rotational Reynolds number (coR~/v) 
time (s) 
dimensionless time (Equation 3), also resi- 
dence time 
dimensionless radial velocity 
dimensionless axial velocity 
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volume (m 3) and velocity (m s -~ ) 
dimensionless axial distance 

Greek and other symbols 

c~ Taylor number ((aZco)/4v) 1/2) 
e ratio of characteristic lengths (a/Ro) 

transformed variable for Taylor 
(Equation 23) 

rc constant 
v kinematic viscosity (m 2 s-1 ) 
co angular velocity (rad s- ' ) 
oo reference value 

Subscripts 

CMavg cup-mix average 
RMAX radial maximum 
in inlet 
Ravg-R average radial velocity at R 
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1. Introduction 

The majority of work done in electroorganic synthesis 
research has been experimental. To begin to compre- 
hend the factors which contribute to efficient cell 
design and operation, knowledge of electrochemical 
cells' mixing environment has been recognized as 
being of primary importance. This is particularly true 
of systems involving competing homogeneous reac- 
tion steps such as the methoxylation of furan or the 
electrochemical production of propylene oxide. 

This paper discusses mixing effects in the three radial 
flow cells (the capillary gap cell (stationary discs), the 
pump cell (one disc spinning) and the rotating elec- 
trolyser (co-rotational discs)). Figure 1 presents the 
geometry of these reactors. In the first section, a brief 
summary of conventional mixing models is included 
after which a more rigorous model of inert tracer 
transport is described. Results are presented for the 
three cells based on this detailed model. Comparisons 
are also made with existing experimental data. Two 
simplified approaches are then applied to the CG cell 
(Taylor diffusivity analysis and pure convection) and 
comparisons made to the numerical solution. 

2. Mixing models 

The axial dispersion model (ADM) is the simplest 
mathematical description of a flow system where both 
convection and diffusion effects are important. For a 
system without homogeneous reaction, the ADM 
usually assumes the form of 

OC 02C V ~C 
0-7 = D ~ - ~ -  ~Z (l) 

By comparison with the complete convection-diffusion 
equation (in cylindrical coordinates and where azi- 
muthal symmetry has been assumed) 

0c D ( 1 
ot - -d~  + -fi ~ + o z  ~ ) 

-- %~-~ + v ~ - ~  (2) 

one can see that the ADM is strictly applicable for 
those systems where radial concentration gradients 
are zero and where v z equals a constant V; that is, plug 
flow operation with diffusion effects in the direction 
parallel to the mean fluid flow. Considerable success 
has been obtained using the ADM for systems where 
the influence of the velocity profile is grouped in with 
the diffusion coefficient. Wen and Fan [1] report 
the broad range of applicability of the ADM when 
the dispersion coefficient is defined as: K = D + 
V2 RZ /(48D). 

Fahidy [2] discussed the application of the ADM to 
electrochemical reactors where all deviations from 
plug flow behaviour are lumped into the dispersion 
coefficient. Fleischmann and Jansson [3] applied 
the ADM methodology to the radial flow geometry. 
Therein the effects of diffusion, parabolic profile and 
fluid deceleration were all subsumed under the disper- 
sion coefficient. Their model compared poorly with 
experiment. Fleischmann and Jansson recognized this 
deviation as associated with the tracers being gener- 
ated and detected at the electrodes. The tracer responses 
would represent a much different residence time distri- 
bution than the fluid bulk would possess. Fleischmann 
et al. [4] reported a high degree of segregation (the 
normalized first moments of the experimental tracer 
responses were as much as two orders of magnitude 
greater than those of the model). 

Jansson and Marshall [5, 6] successfully applied two 
empirical models to parallel plate reactors. Despite the 
success of these simplified models in matching experi- 
mental data, their use will be limited for systems 
involving complex homogeneous reaction paths and 
high Damkohler numbers. In these cases, one must be 
able to account for the important phenomena in a 
more complete and fundamental manner. 

Since little has been done to describe mixing in 
radial flow cells, a mathematical model was developed 
to predict inert tracer transport within the capillary 
gap cell, the pump cell and the rotating eleetrolyser. 
Comparison can then be made to some limiting cases 
and possible areas of application deduced. 

3. Detailed numerical model 
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Fig. I. Radial cell geometry. 

This section describes the development of a detailed 
mathematical model which quantifies mixing effects in 
the three laminar radial flow reactors. 

3.1. Problem formulation 

The rotating electrolyser may exhibit a radial vel- 
port had negligible effect on the flow field. Since the 
Peclet number (Pc) is almost always large (f> 100), the 
tracer should have little impact on the velocity pro- 
files. The second assumption is that the diffusion 
coefficient is a constant. Deviations from this should 
be small for isothermal systems. 

With these assumptions, the velocity profiles (detailed 
elsewhere [7, 19]) were substituted into the convective 
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diffusion Equation 3 (or in dimensionless form) 

 2oc 
- _ Oz  2 )  

( ac ac) 
- Pe ~vr ~ r  + Vz -&z (3) 

where the dimensionless variables defined are 

D t  C R Z 
r = --'C=-c~:r=~;Za 2 ' = - - a  

V r V z a vca 
vr - ; vz = - - ;  ~ = - ~  ; Pe  = - -  

vc v~ O 

The REL characteristic velocity is defined as the maxi- 
mum velocity at the inert radius of the pipe (Rin). For 
the other two cells the characteristic velocity used is 
vo = 6Q/(27rR~,a). The boundary conditions then 
complete the formulation. For  the case of inert tracer, 
the disc surfaces are unreactive and therefore 8C/8z  = 

0. At the inlet to the reactor, the boundary conditions 
differ according to whethe: the tracer is bulk or wall 
generated and whether reverse flows are present. 
These conditions will now be described according to 
cell type and inlet-outlet boundary. 

At the inlet boundary of the capillary gap cell the 
boundary conditions are of the essential type - where 
the value of  the concentration is specified (1.0 for this 
dimensionless form). For  wall-generated tracer, an 
initial point source is present and then removed. This 
point source is located at a certain radius further out 
than the cell inlet however, so that 'pure solvent' can 
be specified at the inlet. Figure 2 illustrates this bound- 
ary condition. The distance d~ was determined by 
increasing the distance between reactor inlet and the 
point source until radial back diffusion did not alter 
the inlet concentrations. 

The exit end condition is the standard Danckwert 's 
type ~C/Sr  = 0. In addition the R0 was specified very 
large (e = 333), 3.5 times larger than where the 
last experimental tracer was detected in the work of 
Fleischmann et al. [4]. Thus negligible error would 
result from the exit-end boundary conditions. 

The pump cell was more involved due to the reverse 
radial flows. Since considerable reverse radial flows 
are even possible at the inlet, the simulation had to 
begin from a smaller radius than where the bulk tracer 
was injected. This would correspond to the gauze-type 
tracer injection as described by Jansson [6]. The inner- 
most radius was assigned the 8C/8r  = 0 condition. 
For  wall tracer the same method was used as for the 
capillary gap cell. 

At the exit end the conditions imposed were 
8C/8r  = 0 across the gap where v~ was positive and C 
was specified as zero over the region of  radial inflow. 

This would simulate the case where the cell empties 
into a comparatively very large CSTR, where the con- 
centration in the CSTR always remains negligible. 
Where tracer accumulation in the tank is minimal, this 
would be a realistic representation. 

The rotating electrolyser may exhibit a radial vel- 
ocity profile which is either always positive or which 
may contain some regions of very small reverse radial 
flows. Therefore, depending on whether reverse flows 
are present, the boundary conditions are either e f  the 
capillary gap type or of the pump cell type. 

With the boundary conditions now specified, by 
defining the initial condition as zero tracer concen- 
tration, the problem formulation is complete. 

3.2. N u m e r i c a l  analys i s /program construct ion 

Transient 2-D modelling of convective diffusion usually 
requires numerical solution. Owing to the complexities 
of the pump cell and rotating electrolyser a numerical 
solution was sought. Simplified models were devel- 
oped for the capillary gap cell, but even so, an accurate 
representation over a broad range of parameters 
requires a numerical solution. 

With transient 2-D split boundary value problems 
the most popular methods are finite differences 
(FDM) and finite elements (FEM), coupled with a 
time integration technique. In this case owing to the 
grid refinement capabilities of the FEM, and the 
ease with which natural boundary conditions can be 
implemented, FEM was chosen for this problem. 

The spatial terms of  the equation were approxi- 
mated by standard FEM techniques and the time 
dependence was included by finite difference. The 
technique was structured so that an implicit solution 
was obtained. Two approximations in time were 
employed: the second-order accurate Crank-Nicolson 
and the first-order forward difference schemes. Although 
the first method is more accurate, it requires signifi- 
cantly more storage space. Because of this, the first- 
order method was used, requiring less storage space 
but more time steps to complete the computation. 
With the computer used herein, the latter method was 
the more efficient. 

For  the system of interest, a flow rate of about 
12.5 • 10 -6 m 3 s -t and a gap width of 0.60mm, cor- 
responding to a Peclet number on the order of 10 6, 

were used. Under these conditions the program pre- 
dicted unphysical concentrations and exhibited severe 
oscillation. This behaviour is well documented in the 
literature particularly for the analogous heat transfer 
problem [8-10]. It is observed that for convection- 
dominated flows the conventional Galerkin form of 
the FEM does induce numerical oscillations for any- 
thing but an extremely discretized domain. The 
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Fig. 2. Inlet boundary conditions for wall tracer. 
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Fig. 3. Capillary gap cell averaged responses. 
Gap = 0.60ram and flow rate = 12.5 x 10  - 6  
m 3 s - I  ' 

proponents of  the Galerkin FEM (GFEM)  emphasize 
that the G F E M  is the most  accurate of  the FEM 
techniques and that if oscillations result, recourse 
should be made to discretization [10]. This however 
may make the problem extremely costly. The other 
school of  thought is that, rather than resorting to 
excessive discretization, it is preferable to alter the 
form of the 'arbi t rary '  trial function (which in the 
Galerkin form is the basis function). Success, both in 
accuracy and stability, has been reported by weighing 
more heavily the 'upst ream'  or 'upwind'  contributions 
to each element [9, 11, 12] - the upwind side being 
determined by the orientation of the velocity vector on 
the side of  that element; this approach is known as 
'upwinding'  or upwind finite elements (UFEM). 

From the work of  Huyakorn  el al. [12] and pre- 
liminary results using the G F E M  it was decided that 
upwinding techniques should be applied. This was 
expected to result in computat ional  efficiency with- 
out sacrificing too much accuracy [12]. 

3.3. Results from the FEM analysis 

Before interpreting the results, two different types of  
tracer marking and detection should be distinguished. 
According to Levenspiel e t al. [13, 14] and Turner [15], 
only one combination of injection and detection will 
provide the residence time distribution of  the fluid. 
The other combinations may provide some insight 
into the problem but do not represent the fluid's his- 
tory in the vessel. They describe the different injection 
and detection types as: 

Injection A - proport ional  to local velocity 
Injection B - not proport ional  to velocity 
Detection A'  - cup-mix average 
Detection B' - area averaged 

which result in four distinct interpretive methods: 
Scheme 1 - A-A" 
Scheme 2 - A - B '  
Scheme 3 - B -A '  
Scheme 4 - B-B'  

The two averages are defined as: 
(1) Cup-mix 

fo~ 2~rvr (Z)r C(z, t)~ dz 
CCM,vg = e, (4) 

J0 2~rvr(z) r dz 

(2) Area average 

CA ...... g = (l/a) Is C(z, t)r dz (5) 

Figure 3 shows the results of  Schemes 1 and 2 for 
the capillary gap cell. The mean residence times calcu- 
lated from these curves were 0.172 and 0.442 s from 
Scheme 1 and 0.266 and 0.637 s for Scheme 2. The 
actual mean residence times at 39 and 57 mm radius 
are 0.169 and 0.430s. The first moment  of  the exit 
age distribution (or the zeroth moment  of  the wash- 
out function) equals the mean residence time [13] 
and therefore Scheme 1 is the only tracer analysis 
which provides the actual representation of the fluid's 
residence time distribution. Any other mode of injec- 
tion and detection will not yield the true RTD.  I f  an 
incorrect R T D  was used for reactor calculations con- 
siderable errors could result particularly for large 
Damkohler  numbers. Therefore care must be taken in 
tracer experiment interpretation and design. 

It should be emphasized that this is for a closed 
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Fig. 4. Pump cell solution at 350rpm. Bulk tracer response at R = 
39ram. Gap = 0.60ram and flow rate = 12.5 x 10 .6 m 3 s 1. 
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]{Zig. 5. Rotating electrotyser at c~ = 11.3_ Bulk tracer response at 
R = 39ram. Gap = 6.4ram and flowrate = 3.82 x 10 -s m 3 s~L 

system, that is, that each particle enters the system only 
once; once the particle exits it never re-enters. This is 
the situation for the capillary gap cell but the pump 
cell and rotating electrolyser exhibit reverse radial 
flows over most  of  the range of  their application; this 
is especially Uue of  the pump cell where the very 
strong reverse flows are observed. However, since it 
was assumed that the cells discharge into an infinite 
CSTR of negligible concentration, the open nature of  
the two cells is circumvented - they therefore contain 
two solvent entry zones (Ri, and R0) but only one 
solute injection region. Figures 4 and 5 present the 
tracer responses for bulk tracer injection. Also plotted 
are the radial velocity profiles. Figure 4 describes 
l:he transport  of  tracer in the pump cell. Owing to 
the assumption of  the pump cell emptying into an 
infinite CSTR the lower half of  the gap has almost 
100% tracer and the upper half is very low in tracer 
concentration. Sharp concentration gradients exist 
between the two halves, consistent with the convection- 
dominated nature of  the problem and the boundary 
conditions used. One other point of  interest is that the 
high reverse flows at larger radius decrease in mag- 
nitude at smaller radii. In this case the radial velocities 
become completely positive at a radius of  about  10 mm, 
and with the significant axial velocities, this pure sol- 
vent flow source must be gradually transported out in 
the radial jet, close to the spinning electrode. This 
'dilution' of  the tracer jet is exhibited by the region of 
positive radial flow (0.50 < z < 0.75) where only 
very small changes in concentration are observed over 
relatively large times - note that below z = 0.50 the 
concentration is almost 1.0 after 0.87 s. Because of the 
nature of  the pump cell, with its strong reverse flows, 
washout curves were not generated. Computat ions 
made for this cell will be very sensitive to the complete 

reactor system, including the vessel into which the 
pump cell empties (and where the reverse flows orig- 
inate) and actual accumulation in the discharge l;ank 
which was not included in the model. 

The rotating electrolyser at 350 rpm (corresponding 
toaReoofl.O x 105), a flow rate of  l2.5 x lO-6m~s -I 
and a gap of  0 .60mm (Taylor number  of  1.8) resulted 
in a profile only slightly different to that of  the capil- 
lary gap cell; Vr was always positive after the entry 
region having a slightly flatter appearance than the 
parabolic profile present in the capillary gap cell. 
Therefore rather than duplicate the C G  response 
(they would be very close) a much larger Taylor number 
was used - 11.3. Figure 5 presents the results of  this 
computat ion also showing the radial velocity profile. 
In this case the velocity jets very near the electrodes 
were evident, and as for the convection-dominated 
nature of  this cell, the steep concentration gradients 
are again indicative. In contrast  to the PC, the central 
portion of the interelectrode gap is very nearly stag- 
nant, and the axial velocities are negligible after the 
entry length. This is evidenced by the more positive 
concentrations over the whole region of  positive radial 
velocities: there is much less dilution due to the influx 
of pure solvent at the exit radius and hence the higher 
concentrations over the positive velocity zones. (The 
concentrations greater than 1.0 are due to spline inter- 
polation (in plotting) and were not  calculated.) The 
isolation of  the two wall jets from each other can be 
readily seen and this is the major  reason for the 
separation efficiency of anolyte and catholyte streams 
observed in previous rotating electrolyser research 
[16-18]. 

Wall-generated tracer simulations were then done; 
these would correspond to an extreme example of  
injection Scheme B. For  this wall injection, the detec- 
tion was made at the wall in the experiments done by 
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Fig. 6. Wall tracer response at two radii. Gap = 0,60mm and flow 
rate = 12.5 x 10 -6 m 3 s -u. (a) Capillary gap cell; (b) pump cell at 
350 rpm. 
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Fleischmann et al. [4]. Figure 6 presents wall tracer 
responses for the C G  and PC, the latter being at 
350 rpm. Note that for the same flow rate, the pump 
cell response is less dispersed. The first moments  of  
these curves at 39 and 57mm are 1.45 and 2.59s for 
the capillary gap cell, 0.65 and 0.91 s for the pump cell 
and 0.97 and 1.73 s for the REL (response not shown 
since velocity profile similar to the CG). The first two 
curves are qualitatively consistent with the results of  
Fleischmann et al. [4], no further comparison being 
possible owing to a seeming inconsistency in Fig. 3 of  
that paper  [4]. They show no experimental response 
curve for the pump cell however. Qualitative curves 
were shown in Ref. [3] and the trend between Figs 6a 
and 6b (as rotation is included) is confirmed by Fleis- 
chmann and Jansson [3]. As rotation is included, their 
experimental responses become less dispersed. 

Calculating the zeroth moment  of  the wall tracer 
at successive radii provides an indication of  mass 
exchange between the wall and the bulk of  the fluid. A 
normalized zeroth moment  can be defined as 

fo  Cwall (r, z) d'r 
M0 = (6) 

fo  Cwall(29.5mm, z) dz 

Figure 7a presents a comparison of  these normalized 
zeroth moments  for three cells. As mentioned, the 
REL at these conditions (350rpm, 0 .60mm gap, 
12.5 x 10 - 6  m 3 s -] flow rate) was similar to the capil- 
lary gap cell and hence its zeroth moments,  based on 
wall concentrations, should be close to those of  the 
C G  cell. Figure 7a substantiates this. The results of  the 
pump cell were somewhat unexpected however, since 
the axial velocities are finite and towards the electrode 
where the tracer was generated. However, in light of  
the results of  Fig. 4, the greater change in zeroth 
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Fig. 7. Wall tracer results. (a) Normalized zeroth moments for wall 
tracer. Gap = 0.60mm and flow rate = 12.5 x 10 -6 m3 s  ~. 
(b) Wall tracer response for the CG cell. Gap = 6.40 mm and flow 
rate = 3.82 x 10 6 m 3 8 - 1 .  

moment  in the pump cell would be due to dilution by 
the incoming solvent. 

The same was then done at a lower flow rate 3.82 x 
10 -6  m 3 S 1 at a larger gap (6.4mm) but was done for 
only the C G  and REL since the 6.4 m m  gap was too 
large to maintain accuracy in the perturbation sol- 
ution velocities (e = 3.8) for the pump cell. This 
deficiency in velocity prediction has recently been 
resolved [19]. Figures 7b and 8a present the wall 
response for the C G  and REL. The response for the 
REL is somewhat sharper than the C G  cell for these 
conditions (figure not included for pump cell under 
these conditions). An important  conclusion is lucidly 
shown in Fig. 8b. The zeroth moment  for the REL at 
a Taylor number  of  11.3 is much higher than in the 
CG cell at the 57 m m  radius, indicative of  little mass 
exchange between the electrode surface and the fluid 
bulk for the rotating electrolyser. 

This provides a conclusive commentary  on the sep- 
arat ion efficiency of the rotating electrolyser, the 
Taylor number being the important  parameter  in sep- 
aration of  the two electrode jets. Since the form of the 
radial velocities is very insensitive to flow rate for a 
given Taylor number, the degree of separation can be 
specified essentially by setting the gap width and rpm 
for a given Newtonian fluid. 

4. Simplif ied analyses  

Two simplified models were then developed for com- 
parison with the rigorous model. Owing to the complex 
nature of  the rotational cells this was done for the 
capillary gap cell only. The first model developed was 
based on the assumption that the characteristic dif- 
fusion time (td) was much larger than the character- 
istic convection time (to). The second model was based 
upon the td/tc ratio being very small. These will now be 
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Fig. 8, Wall tracer results. (a) Rotating electrolyser at c~ = 11.3. 
Response with gap = 6.40mm and flow rate = 3.83 • 10 -6 m 3 s t. 
(b) Normalized zeroth moments. Gap = 6.40 mm and flow rate = 
3.82 x 10 -6 m 3 s t. 
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summarized including a comparison with the rigorous 
model. 

4.1. Pure convection 

For this case, diffusion effects are assumed to be neg- 
ligible compared to convection. The equation reduces 
to a first-order partial differential equation. 

3C 3C 
- ( 7 )  

a t  Vr OR 

where 

VRMAXRin (1 - z 2) (8) 
V r ~ 

and where z = a/au2 , where au2 is the half-gap width. 
For a step input of tracer it follows from the pure 

convection model that the tracer is dispersed into a 
paraboloid form. To relate the spread of tracer to time 
and radial distance, an average velocity needs to be 
defined. This is defined as 

[R ((VRMAx Rin)/R)(1 - -  2~ z2)edR 

VR~vg-R = ~ 2re f~ RdR (9) 

= 2 V R M A x R i n ( 1  - -  z2)/R (10) 

To relate VRMAX&~ to volumetric flow rate Q, the 
f'ollowing definition can be used: 

Q = 4rcRi.a~/2 f~ VR~aAX(1 -- Z 2) dz (1  1) 

recalling that z is dimensionless but the other variables 
are dimensional quantities. Integrating, one sees that 

3Q 3Q 
'VRMAXRin - -  8 / ~ a u 2  = 4rc---a (12) 

Therefore 

3Q (1 - z 2) (13) 
VRavg'R - -  2=aR 

and the locus of radial positions defined by this para- 
botic velocity is then 

3Q t(1 - z 2) (14) 
R - 2~aR 

o r  

R2 = 3Q t(1 - z 2) (15) 
2rca 

For comparison with the subsequent analysis, 
where diffusion time is less than convection time, (and 
where area-averaged quantities are defined), area- 
averaged concentrations will be computed using 
Equation 15. After comparing the area averages, the 
exit age distribution could be generated from this 
information; although for this step injection of tracer 
the F curve (cumulative residence time distribution) 
would be the result and would have to be differen- 
tiated to provide the E curve. 

Equation 15 can be rearranged to give the axial 
coordinate, at any radius and time, where tracer is 
present. By then integrating from Z = 0 (centre line) 

to Z equal to the solution of Equation 15, the area- 
average concentration (which for the pure convection 
case is the same as the cup-mix average due to the 
implicit weighting of the area according to the velocity 
profile) is obtained. Therefore, solving Equation 15 
for Z, as Wen and Fan [1] did for pipe flow 

X/( 2rcaR2"~ 
Z = 1.0 3Ot ] ,(16) 

For 

For 

then 

2~aR 2 
3Q-----~ > 1.0; Cavg = 0 

2naR 2 
- - ~  1.0 

3Qt 

eZ J el 
Cavg = j o C 0 d z / j s  dz ,[17) 

where )~ is a 'dummy' integration variable. For  the 
dimensionless concentration defined herein 

X/t 2~aR2) (18) Cavg = 1.0 3Qt 

the average dimensionless concentrations are thus 
determined for the pure convection case. 

4.2. Taylor diffusion 

In a classical work, Taylor [20] discusses the disper- 
sion of a solute in very slow pipe flow. He developed 
a succinct description of the dispersion phenomena 
reducing the convective diffusion equation to a dif- 
fusion equation where the spatial variable was moving 
at the mean velocity of the flow. 

From Equation 2, below reproduced, one has 

oc D ( ~ 1 oc o2c'  

- v , ? - / +  Vz 2 (2) 

A z i m u t h a l  symmetry  is assumed as wel l  as constant  D. 
Its assumed that the contribution of diffusion parallel 
to the mean fluid flow is small compared to the per- 
pendicular diffusion term and that axial velocities are 
negligible. Equation 2 simplifies to 

0C 02C 0C 
0--7 = D ~ - ~ -  v , ~  (19) 

Defining a dimensionless axial coordinate z as Z/(a/2) 
(in the remainder of the development let A = a/2 for 
brevity), therefore 

0C O 02C VRMAXRin (1 -- Z 2) 0C (20) 
0t - A 2 0 z  2 R ~ -R  

Letting ~ = R 2, the equation becomes 

0C _ D 02C 0C 
2VRMAxRin(1 -- Z2)-;~-.~ (:21) 

0 t  A 2 0 z  2 v g  
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Taylor then defined a coordinate transformation 
where the longitudinal coordinate is moving at the 
mean velocity of the fluid. In the radial flow geometry 
the velocity is decreasing with radius and hence to 
define a mean velocity a radially averaged areal pro- 
gression rate is employed. Defining this as (R 2 - R~n)/z 
(where r is the mean residence time), the mean pro- 
gression rate is Q/2nA. Defining a new coordinate 

= ~ -  Qt/(2nA), including the definition of 
VRMAxR~, (Equation 12) and subtracting this from the 
convective term in Equation 21 results in 

c~Cc~t A ~-D c32Cc~z 2 (1 -- 3z 2) ~-~ (22) 

Putting into dimensionless form, one obtains 

~3C 1 0 2 C  1 (1 - -  3 z  2) 6qC 
~ ? z  - Pe~ 0z ~ 2 &-r (23) 

where Pe~ = QA/(2nR2oD) and r = ~/R~. 
Taylor defines the characteristic time of diffusion as 

the time required for the centre-line concentration to 
deteriorate to 1/e of its value or Coe '. His determi- 
nation involved a zero-order Bessel function series. 
For the capillary gap cell the resulting separated dif- 
ferential equation (in z) was more simple 

~2C 
Oz 2 + Pe~22C = 0 (24) 

The solution of this part of the equation (where ~C/OR 
was assumed zero for determining ta) is 

C = 2 exp (--(nn)2~/Per)(B, cos z 
n=, 

(25) 

and where 2, (eigen values) are defined as 

2, = nn/Pe~/z (26) 

The term which would decrease the slowest with time 
would correspond to the smallest eigen value or 

2, = n/Pe~ n (27) 

Hence, the time required for the concentration to 
decay to e-t of its initial value would be 

(1  + l n 2 )  (1 +ln2)A2 (28) 
'I'd ~ ~2 o r  t d - n2 o 

To be consistent with the initial assumption, this dif- 
fusion time (t~) must be significantly less than the 
convection time (to) defined as (basing to on maximum 
velocity instead of axially averaged velocity) 

2an(R ~ -- R~,) 
t~ = (29) 

3Q 

The remainder of Taylor's argument is contingent 
upon the fact that 

t~ ,~ t~ (30) 

Since the td/tr relationship changes with radius, the 
critical radius can be calculated. If  the model is applied 
at radii smaller than the critical radius, the assump- 

tions will not be valid and the model would be expected 
to fall. Computing R when ta = to one has 

(1 + lnZ)A 2 4A~(R 2 - RZn) 
- (31) 

n2D 3Q 

/(3QA(1 + ln2)) 

From Equation 23, on physical grounds, Taylor 
argues that any change with time occurs more slowly 
than the changes due to diffusion and convection; at 
least ~C/at < 02C/~z 2. This pseudo-steady state 
assumption should not be too restrictive since the 
resulting fluxes calculated are later used in an unsteady 
state mass balance. If  Condition 30 is satisfied and 
Rinterest > Rcritical then any perpendicular variation in C 
disappears very rapidly. This perpendicular variation 
(i.e. perpendicular to the fluid flow) can then be cal- 
culated from the pseudo-steady form of Equation 23, 
assuming OC/& is independent of z since changes in 
concentration in z occur very rapidly compared to 
changes with respect to ~ (or r). Therefore 

1 ~2C 1 c?C 
Per ~3z 2 - 2 (1 - 3z 2) ~3-7- (32) 

Involving the boundary conditions that C(z = O) = 
C, and OC(z = 1.O)/~3z -- 0, one has 

c ( z ,  r) = c ,  - 5 -  + 7 r  (33) 

To calculate the dimensionless transfer of  tracer 
across the radial perimeter at r, one defines the dimen- 
sionless tracer flow as 

~(11 ( -2- P e r ( ~  z4\ 0C\  _ _ 
f l o w  = _ 3 z 2 )  + - 

(33) 

Upon integrating and substituting the dimensionless 
quantities one obtains (gmole/time) 

Q2 A ~?C 
flow - 105R~nD c~r (34) 

Converting back to ff transformation and doing a 
mass balance across a differential annular element one 
obtains 

- ( OC 2nA d~ = Q2A 
~3t 105riD 

0C 
-1- ( QZA ~-~) ~+d c 105riD _ (35) 

Remembering the definition of the variable ~ with its 
derivative being 2R dR, after dividing through by d~ 
and taking the limit as d~ goes to zero: 

c3C Q2 A ~2C 
0--t 2hA - 105riD c3~ "2 (36) 

o r  

~3C Q2 ~2 C 

Ot 8 4 0 T c 2 D R  2 c3R 2 
(37) 
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By analogy with the classical diffusion equation, the 
Taylor diffusion coeff• is obtained: 

8C c72C 
- K - -  ( 3 8 )  

~t 8R 2 

Since diffusion effects are very rapid, the concen- 
tration in this equation is representative of  the average 
concentration at any R value. Therefore tracer is dis- 
persed relative to a radius moving at a mean velocity 
of Q/(2~AR) in the same manner as a molecular dif- 
filsion process, except that the diffusivity is replaced 
by the dispersion coefficient K where 

K _ 
Q 2 

840~r2DR 2 or in moving coordinates (~) 

F -  Q2 
210Og 2 

Taylor's expression of  K for pipe flow is 

a2 u~ Q2 

K = 192D 192~2a2D (40) 

The Taylor diffusivity for the radial geometry is not a 
function of  a owing to the different dependence of td 
and t~ on a in the tube which Taylor described. The 
approximate solution to Equation 38 for constant Kis 
obtained by Laplace transform of  the time derivative 
and then imposing the boundary conditions on 8. (It 
should be noted that the solution is approximate since 
the boundary conditions include a finite radius and 
not tracer injection at R = 0.) Inversion of the 
Laplace domain solution, which was 

C(s, ~) = (l/s) exp (--s1/2(~/Fl/2)) 

yields (from mathematical tables) 

C(t, ~) = 0.50(1.0 - erf(O.50~F-lnt-~/2)) ~ > 0 

(41) 

By using the transformation for ~, the average con- 
centration (under the conditions that t d ~ t c area- 
averaged or cup-mix averaged values should provide 
the same value) can then be computed as a function of 
time and radius. 

4.3. Results of  simplified models 

For a highly convection-dominated flow, the charac- 
teristic diffusion time is much larger than the charac- 
teristic convection time. The highest flow rate used in 
this work was 12.5 x 10  -6  m 3 S -1 which corresponded 
to a Peclet number of about 10 v. For this flow rate 
td = 15.4s and t~ = 0.29s and therefore the pure 
convection model should compare more favourably 
with the numerical solution. This is also reflected by 
the critical radius being 392 mm while the compu- 
tations were done at 39 and 57 ram. Figure 9 illustrates 
this. The small disagreement between the FEM and 
the convection model is probably due to numerical 
dispersion in the FEM at small time. The behaviour 
is well documented in analogous heat transfer prob- 
lems for upwinding solutions [l 1, 12]. For  the Taylor 
model, agreement is very poor, as to be expected 
based on the ta/t ~ ratio and R~,~o~t being large. All the 
inherent assumptions of the Taylor model are grossly 
in error. 

For  the next flow rate, 12.5 x 10-sin 3s -l, the 
comparison is shown in Fig. 10. As expected based on 
the ta/t~ ratio (0.54 with Rr = 4ram), the Taylor 
predictions are more dispersed than should be the 
case, although the agreement is much better. The 
convection model does not provide an  adequate repre- 
sentation either. At breakthrough the comparison is 
quite good but at large time, as tracer is diffusing from 
the wall layers into the bulk (and transported out), the 
pure convection model deviates significantly. This 
result is expected since the tracer can only exit by 
convection. Since the velocities of the lamenae near 
the walt are small, the tails of the pure convection 
model are much longer than would be the case if 
diffusion effects were present. 

The next flow rate, 12.5 x 10-l~ 3 s -1, corre- 
sponded to a td/t~ ratio of about 0.005. For this flow 
rate neither simplified model compared well with the 
rigorous solution as shown in Fig. 11. The inadequacy 
of the convection model is readily explained by the 
lack of diffusion from the wall to the lamenae out. 
However with the ta/tc being about 0.005, the Taylor 
solution was expected to provide a better match 
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Fig. 9. Cap i l l a ry  gap  cell a rea-averaged responses. 
Gap  = 0 . 6 0 m m  and  flow rate  = 12.5 • I0 -6 
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Fig. 10. Capillary gap cell area-averaged responses. 
Gap = 0.60mm and flow rate = 12.5 x 10 -s 
m 3 S -1 ' 

(Rcrit ical  = 20.4 mm). The lack of agreement is prob- 
ably due to having omitted diffusion parallel to the 
direction of flow. At very low velocities the diffusion 
parallel to flow will not be negligible. The simple 
addition of the molecular diffusivity to the Taylor 
dispersion resulted in excessive dispersion at the lower 
flow rates and was not investigated further. 

In light of this the Taylor diffusivity is not a very 
versatile tool, although if the radial diffusion terms 
were included, it could be used for systems where td / t  c 
was less than about 0.01. The pure convection model 
provided an adequate representation for the averaged 
tracer response at flows where td/tc was greater than 
about 100. 

It should be mentioned here that a Taylor model 
was begun for the rotating electrolyser. The method- 
ology followed was the same as for the CG except for 
the velocity profile. In the CG it was parabolic. In the 
REL, the least squares technique was used to fit 
the asymptotic velocities to a polynomial. The appli- 
cations of  the REL will be for high Taylor number and 
hence the 11.3 Taylor number run was investigated. 
Using seven points from the velocity predictions 
(seven points per half gap), a sixth-order polynomial 
(exact fit) was required to reduce the sum-of-squares 
error to an acceptable value. When intermediate 
points were checked very unrealistic profiles were 
obtained. This was not entirely unexpected owing to 
the very extreme nature of  the velocity profile 
observed. No further effort was expended to try and 
gain the Taylor diffusivity model for the REL. 

5. Summary of inert tracer modelling 

Incorporating the detailed velocity profiles solved for 
previously [7, 19], inert tracer transport was modelled 
using the convective diffusion equation. Upwind finite 
element methods were used to develop a detailed sol- 
ution to tracer transport in the three radial flow cells 
under scrutiny: the capillary gap cell, the pump cell 
and the rotating electrolyser. 

It was shown how correct tracer injection and detec- 
tion must occur in order to infer the correct RTD on 
the basis of the tracer response. 

For  the cells where reverse radial flow was present, 
it was assumed that the system was surrounded by an 
infinite CSTR, and so the open nature of  the rotating 
cells was not dealt with. To simulate this rigorously, 
the surrounding equipment would have to be modelled 
and such was considered beyond the scope of  this 
work. 

Bulk- and wall-generated tracers were modelled and 
interpretations made. Dilution of the wall jet present 
in the pump cell was shown both for the bulk- and 
wall-generated tracers. This was seen to be caused 
by the reverse radial flow of  pure solvent with the 
accompanying finite axial velocities. Comparing the 
zeroth moment of the wall tracer for the PC with that 
of  the CG it was observed that this dilution decreased 
the value of  this moment considerably below that of 
the CG cell. In addition it was also shown that the wall 
response in the PC is much sharper than in the CG, 
simply owing to the presence of the wall jet in the PC. 
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Fig. 11. Capillary gap cell area-averaged responses. 
Gap = 0.60ram and flow rate = 12.5 x 10 to 
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Gap = 0.60mm and flow rate = 12.5 x 10 -H 
m 3 S - I .  

It was shown how the REL was an efficient separ- 
ation device, the degree of separation being a direct 
function of Taylor number for laminar flow. The REL 
also exhibited much sharper wall-tracer responses 
(pulse), again owing to the wall jet being present at 
higher Taylor numbers. 

Simplified models were developed for the capillary 
gap cell and their limits of application quantified. It 
was found that for the radial geometry the convection 
model performed well above a td/tc ratio of 100 and 
the Taylor diffusion model provides an adequate 
representation for a td/tc ratio of about 0.10. The same 
was also attempted for the rotating electrolyser but 
owing to the extreme form of the radial velocity profile 
similar simplified solutions proved futile. None were 
investigated for the pump cell. 

Other more accurate simplified solutions could 
be attempted for the radial geometry, such as using 
fitting procedures with models like the sum-of-two- 
zones and the fast- and stagnant-zone models. Such 
might be entertained at a later time but owing to their 
empiricism they were not investigated herein. 

The impact of these reactors' mixing environments 
has been investigated using the methoxylation of 
furan as a model reaction scheme [21]. There it is 
shown how the mixing influences conversion, selec- 
tivity and current efficiency. 
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